Basic Practical Antennas Welcome to Ham Radio University 2024!

HAM RADIO UNIVERSITY

2024

Our 25th Year!

These Slides are Available at http://www.rcarc.org/Presentations.htm

Dedicated to the Memory of Phil Lewis, N2MUN
Founder of Ham Radio University

- Your ham license allows you to do much more than just operate a radio.
- You can build, operate, and maintain your own equipment (on ham bands).

FCC Registration Number (FRN): 0009742453

- No other radio service allows you to do this.
- Most hams have built, or will build at least one antenna. You can, too.

Three Things These Two Antenna Installations Have in Common

Three Things These Two Antenna Installations Have in Common

1. They Are both Compromise Antennas

Three Things These Two Antenna Installations Have in Common

1. They Are both Compromise Antennas
2. They Were Both Designed with Specific Constraints in Mind

Three Things These Two Antenna Installations Have in Common

1. They Are both Compromise Antennas
2. They Were Both Designed with Specific Constraints in Mind
3. They Can Both Get You on HF

Basic Practical Antennas

What can I
accomplish with
Unlimited Property,
Unlimited Time, and
an Unlimited
Budget?

Basic Practical Antennas

What can I accomplish with
What I've Got?

Every Antenna is a Compromise Antenna! We All Have to Work Within Constraints

Single-Band, Half-Wave, Center-Fed Dipole

Single-Band, Half-Wave, Center-Fed Dipole Not good for double the half-wave frequency

Impedance at feed point:

Thousands of ohms (minimum current, maximum voltage)

Single-Band, Half-Wave, Center-Fed Dipole How about triple the half-wave frequency?

Impedance at feed point:
Back to maximum current, minimum voltage!
About 70 ohms in free space, but closer to 50 ohms if the antenna is closer to the ground
 40 meters (7 MHz) WILL play well on 15 meters (21 MHz)

Odd Harmonics GOOD, Even Harmonics BAD

Single-Band, Half-Wave, Center-Fed Dipole

$$
L=\frac{468}{f(M H z)} \text { feet }
$$

Rope to Support Structure

Radiating Element
End Insulator

To Radio
Center Insulator

Let's Pick a Band!

$1 / 2$ Wave Dipole Lengths (Starting Point)		
Band	Frequency	Length (feet)
80 CW / Digital	3.575	130.91
75 Phone	3.900	120.00
40 CW/Digital	7.075	66.15
40 Phone	7.240	64.64
30 (CW Only)	10.125	46.22
20 CW / Digital	14.075	33.25
20 Phone	14.250	32.84
17 CW / Digital / Phone	18.100	25.86
15 CW/Digital	21.075	22.21
15 Phone	21.300	21.97
12 CW / Digital / Phone	24.940	18.77
10 CW / Digital	28.075	16.67
10 Phone (SSB)	28.300	16.54
10 FM	28.600	16.36
6 meter Calling freq	50.120	9.34

80 is primarily a night time band. With some creativity most of us can shoe-horn a half-wave (130 ft) dipole onto an average $\frac{1}{4}$ acre lot.

40 is good for local (500-800 miles) during the day, but goes long for DX at night. A full size dipole (65 feet) can usually fit in a $\frac{1}{4}$ acre property.

20 is your meat and potatoes daytime DX band, starts to close at night except at the very top of the sunspot cycle. A full size dipole (33 feet) is relatively easy to get onto a $\frac{1}{4}$ acre property.

15 thru 10 - Primarily daytime bands. Fewer band openings than 20 meters, but their openings are much more intense.

You've seen this formula for a half wave antenna...

$$
L=\frac{468}{f(\mathrm{MHz})} \text { feet }
$$

So where do we get the 468??

- Radio Waves travel at the speed of light, about 300,000,000 meters/second
- This translates to 984,000,000 feet/second
- One wavelength of an RF wave is $984,000,000 / \mathrm{f}$ (cycles/sec) or 984/f(MHz)
- So $\frac{1}{2}$ wave, in feet, is $492 / f(\mathrm{MHz})$
- For various reasons - end effects, velocity factor of the wire, interaction with ground (physicists debate on the exact reason), antennas typically need to be about 5\% shorter than 492/f.
- 492*. $95=467.4$ or approximately 468.
- This is a rule of thumb; it may (probably will) be different at your specific location!

Here's what I like to do...

$$
L=\frac{468}{f(M H z)} \text { feet }-5 \%
$$

Initially, shoot for TOO LONG with the tails and TOO SHORT without the tails.
We'll trim the tails down based on actual antenna behavior.

Tuning the Dipole

1. Find the actual frequency where your SWR is MINIMUM
2. If the actual frequency is LOWER than where you plan to operate, the antenna is TOO LONG; trim the tails by this amount:
$\left(1-\binom{\right.$ Actual Freq }{ Desired Freq }$) \times$ Original Length $\times 12$ inches
3. If the actual frequency is HIGHER than where you plan to operate, the antenna is TOO SHORT; lengthen the tails by this amount:
$\left(1-\binom{\right.$ Desired Freq }{ Actual Freq }$) \times$ Original Length $\times 12$ inches

40 Meter Dipole Example

- We want to build a dipole for 40 meters
- FT-8 is a popular mode and 40 meter FT-8 activity is at 7.074 MHz
- Our starting point is $468 / 7.074=66.16$ feet, or about 66 ft 2 inches.
- That's 33 ft 1 inch per side.
- Let's make the main sides about 95% of that, or 31 feet 5 inches
- The tails are just about 2 feet. I'd rather start too long than too short because it's easier to cut the tails than lengthen them so let's go to 2 ft 6 inches. Original length of each side is 33 feet 11 inches or 33.92 feet.
- Haul the antenna up and measure the SWR above and below 7.074 MHz . If you have an antenna analyzer you can make measurements below 7 MHz . Look for the frequency with the lowest SWR.
- Suppose the best frequency is 6.998 MHz . As planned, the antenna is too long and it's time to trim the tails down.
- ($1-6.998 / 7.074$) * 33.92 * $12=4.37$ inches (about $4-3 / 8$ inches)
- So trimming the tails by $4-3 / 8$ inches from each tail should get us to 7.074 MHz .
- You'll do OK in the CW band and most of the phone band with this antenna.

So here's what we ended up with . . .

This antenna is optimized for the 40 meter FT-8 sub-band but should be OK for all of CW band and most of SSB on 40 meters.

Some Insulator Options for Wire Antennas

Homebrew Insulators are Easy...

Inexpensive Store Bought Insulators

Dog Bone Insulator

Egg Insulator

Homebrew Lexan Insulator

Drill a couple of holes in a piece of PVC pipe!

Quick Center Insulator Idea Top two holes drilled for wire Bottom four holes are for tie-wraps to secure feed line

Flat Top - If you have two support structures (Trees in this case)
Height Above Ground Ideally, minimum $1 / 2$ wave above the ground $80 \mathrm{~m}: 130 \mathrm{ft}, 40 \mathrm{~m}: 66 \mathrm{ft}, 20 \mathrm{~m}: 33 \mathrm{ft}$

Only one support available? Consider an Inverted VEE

Overall Height: Higher is still better but not quite as critical as flat top

End points are high voltage points, keep out of reach of people or animals

Got 2 trees but not far enough apart for a $\frac{1}{2}$ wave antenna?
You can bend your dipole into an Inverted U.
The middle 60% of the antenna does most of the work, so this configuration can be effective.

Vertical Antennas

- Small Footprint
- Height Not As Important

Here's a More Practical Approach to Homebrewing a Half Wave Vertical

$1 / 4$ wave wire (22 gauge to 14
gauge, solid or stranded - whatever you have handy)

Feed Point

- Trim shield of coax back so it doesn't short to the center conductor
- Solder the center conductor of the coax to the top section
- Cover with electrical tape or shrink wrap.

Line Isolator -
This can be as simple as 10
turns of coax wound into a coil around a plastic coke bottle

$1 / 2$ Wave Coaxial Vertical Lengths			
(Starting Point)			

Coax Verticals are Great Portable Antennas for 14 Mhz and Up. Hang it From a Tree or a Fiberglass Push-Up Pole and You're On HF!

Not so practical on 40 and 80 meters - If you have a 63' or 121'vertical support you will do better with an inverted Vee.

Helically-Wound Vertical: You can get on 160 meters!

Designed by
John Miller, K6MM

$1 / 2$ wavelength of wire wrapped evenly around three telescoping sections of PVC pipe

Quarter-wave radials (4 minimum, not necessarily straight, can meander)

Construction details at http://www.smeter.net/antennas/short-helical.php

Multi-Band Antennas

A Multi-Band Fan Dipole for 40, 20, and 15 meters

Cut these two
halves for 20
meters

W1ZR Dual Band Folded Skeleton Sleeve Dipole

* Adjust the 40 meter section first, then the 20 meter section.
* Interaction between 40 meter element and 20 meter element is minimal if at all.
- As an added bonus, the 40 meter section will do OK on 15 as well! (odd harmonic)

G5RV Multi-Band Dipole

Variations:

- Lengthen ladder line to 36' for a no-tuner 50 ohm match on 40 meters
' Cut all dimensions in half to get a "G5RV Junior", good on 40 and 20 but not so good on 80 meters
- Double the dimensions for a 160/80/40 meter antenna
50Ω Resistive @ 7.8 MHz at transition to coax cable
> Originally Designed for 20 Meters
- Works Best as Flat Top
- Higher is Better (at least 31 feet)
- Good on 80, 40, and 20 with tuner
- Can be tuned on other bands with tuner, but not as effective

Weatherproof this transition from ladder line to coax

Ferrite Bead Chokes - Keep Coax from Radiating Use FB102-31 for RG-213, 9913, or 9914; Use FB56-31 for RG-8X

Antenna Tuner

Random Length Doublet ("Zepp")

Any Length, preferably at least $\frac{1}{2}$ wave on lowest band

Any Length
450 ohm ladder line or open wire feeder

Balanced Wire Antenna Tuner
(Most commercially made tuners can handle this)

Off-Center Fed Dipole (OCFD)

50 or 70 ohm Coax Option

Keeping RF In the Coax Cable and Off of the Shield

~ 10 turns of coax wound around an old coffee can

Ferrite Compositions:

Mix 31 good down to 1 MHz Mix 43 good above 10 MHz

Mix 31 Ferrite Beads
Slipped Over the Coax
Mix 31 Ferrite Beads
Slipped Over the Coax

5 or 6 turns Through a Mix 31 Ferrite Core

Antenna Getter Uppers

Light Fishing Rod and Golf Ball

Magic Rock and String

Pneumatic Launcher

Recommended Reading ...

A Comparative Look at Multiband Antennas
http://www.hamclass.net/ranv/pres/HC16MultAnt.pdf Joel R. Hallas, W1ZR
https://www.hamuniverse.com/k6mm160metervertical.html The "No-Excuses" 160 Meter Vertical
(As published in the June 2009 issue of QST)
John Miller, K6MM

Thanks for Listening, 73, and See You On the Air!

Neil, KC2KY
kc2ky@arrl.net

These Slides are Available at http://www.rcarc.org/Presentations.htm

